
AN ALGORITHM FOR FLOATING-POINT ACCUMULATION
OF SUMS WITH SMALL RF.LAT IVE ERROR

BY

MICHAEL MALCOLM

STAN-CS-70-1~3

JUNE 1970

Renroduced '.JY the
CLEA~INGHOUSE

for Fed ro1 Sc•entific & Technicel
lnforma:•on Springfield Va. 22151 \

This document a3 be n 1 provod
for pubbc ro :-a=~. a:- sale; il
distribution is unlirrutcd.

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS lTV

AH ALGORITHM FOR FLOATING-POINT ACCUMULATION OF SUMS

WITH SMALL RELATIVE ERROR

by

Michael Malcolm

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

The preparation of this report was sponsored by the
Office of Naval Research under grant number N0013~67-A-
0112-0029t the National Science Foundation under grant
number NSF GJ U08 and the Atomic Energy Commission under
grant number AT (0U-3) 326,PA 30.

I. Introduction

Many algorithms require the calculation of a sum

n
s = J] x , n >3 ,

i=l 1

where x.^x , ...,x are numbers represented in floating point. In

practice, an approximate sum § is computed with rounding errors.

Wilkinson [1] shows that if the sum is accumulated in a single-precision

accumulator (using floating binary arithmetic with t bits of precision

and proper rounding), then

n
^ - s = E x n ,

i=l 1 1

where

(l.2-t)n+l-r$1+Tir5(1+2-t)n+l-r (r = !,...,„) .

Thus the error bound is dependent on the order of summation. This

result has led to the well-known rule of thumb that it is usually best

to add a list of numbers in order of increasing magnitude. If one has

a priori knowledge of the x. (e.g.,][] |x.»| < 1) or i*' "the accumulation

is performed with more precision (say double precision), then much smaller

error bounds can be found. However, as Wilkinson points out, "It should

be emphasized that we still cannot guarantee that an accumulated sum ...

has a low relative error."

Large relative error in an accumulated sum is often the result of

a phenomenon which Professor D.H. Lehmer calls catastrophic cancellation.

This occurs when an intermediate partial sum is much larger in magnitude

than the final sum. Then one or more additions result in a loss of

significant digits. The post-normalization step of a subsequent

addition thus introduces zeros in place of significant digits.

However, as Professor William Kahan has observed, this large cancellation

is not the cause of the error — it merely reveals the error. That is,

the real villain here is not the cancellation, but rather the large

intermediate sums within a floating-point system of given precision.

Perhaps "catastrophic loss of precision" would be a more appropriate

name. Catastophic cancellation is fairly common with poorly designed

algorithms; most good algorithms have built-in precautions which avoid

(or usually avoid) thic phenomenon.

Large relative errors can occur without catastrophic cancellation.

This happens in large summations (n » 3) where the intermediate sums

become much larger in magnitude than the individual addends, but not

larger than the final sum. This sort of error can occur in numerical

integration using a large number of intervals. Wolfe [2] proposed a

technique for avoiding this type of error« It is described in the

following section.

In the remainder of this report, a modification of Wolfe's algorithm

is presented, followed by a detailed error analysis. This algorithm has

the advantage that the final sum is guaranteed to have a very small

relative error.

II. Extended Summation With Cascading Accumulators

Wolfe [2] suggests a technique which is easily programmed and requires

only a small number of additional storage locations. These extra locations,

called cascading accumulators, are denoted by si, s2, The separate

accumulators hold sums that are in various intervals; for example.

1.000 < c(sl) < 9-999

10.00 < c(s2) < 99.99

100.0 < c(s3) < 999-9

where c(sl) denotes the contents of si . The summing is done at

the lowest level accumulator (si) until it is about to overflow.

At that point it is added to the next accumulator (s2) and reset to

zero. Similarly, if s?. is about to overflow, it is added to s3 and

reset to zero, and so on.

By this technique the intermediate sums never become much larger

than the addends. However, catac-trophic cancellation can occur Just

as before. Wolfe does not discuss how to go about summing the accumulators

at the end; in an example he uses the order of increasing magnitude.

For certain problems, this is a useful technique; however, there is no

guarantee that the final result has a small relative error.

III. A Modification of Wolfe's Algorithm

The following algorithm requires little if any more execution

time than the algorithm of the last section, and nearly full-

precision accuracy is achieved, provided exponent underflow or overflow

do not occur. Such exceptional conditions are nomally brought to the

attention of the user by the system software and, if so, inaccurate

results cannot go unnoticed. As in Wolfe's algorithm, additional

intermediate accumulators are used — typically fewer than 50.

>

The following discussion assumes the algorithm Is implemented

on a machine using a floating-point number system F of base ß

(usually ß is 2, 8, 10 or 16) with a t-dlgit mantissa. The

exponent e is assumed to lie in the range

-m < e < M

Thus each nonzero xeF has the normalized representation

x =+ .d1d2...dt -ß
6 , (1)

where d1,...,d. are integers satisfying

1 < d1 < ß-1 ,

0 < di < ß-1 (i = 2,...,t) .

The number 0 belongs to F , and has the structure

0 = .00...0 • ß"m .

All floating-point addition is assumed to be normalized. The machine

may do either proper rounding or truncation (chopping).

To facilitate discussion, the function /ev (similar to that used

by Miller [5]) is defined as follows: If xeF then fev(x) = e + m .

fev is the biased exponent having the mnemonic "level". Note that lev

is a function o:" the representation of a number and not the number

itself. For example, suppose x is to be added to y , where |y| > |x|,

and that x must be unnormalized during operand alignment. Suppose also

that no nonzero digits are lost from the mantissa of x while it is being

unnoxnallzed. If we denote the unnormalized representation of x by x >

then x and x both represent the same real number exactly, but

iev(50 > /ev(x) .
n

The algorithm for computing Y, x* can now be described as
i=l

follows. There are two positive parameters, I and TJ :

Assume there are T)+1 accumulators, the contents of which are

denoted by a,a,...,a .

1. Set each of the accumulators to zero.

2. For each x. form aii^ a4 p'' * *' aia (^ > 1) > where

a.1+a.p+ ... + a. = x. and each a., has the property

that the last I digits are 0 (i.e., d, .+. = d.. = ... =

dt =0).

3. Each a is added to the k-th accmnulator, where k is

determined by

vk < lev(a. .) < vk+v-1 ,

(2)
v = rCM+m+D/h + Dl

where FI ~| denotes the smallest integer not less than £ .

(Thus

k = '«^(«0 TV, (5)

in the sense of Algol 60.)

k. The accumulators are summed in decreasing order (i.e.,

TJ,T)-1, ...,0) .

The second step appears, at first sight, to be quite complicated.

However, in practice it is easily done, especially on a machine with

double-precision arithmetic. An illustration of this in Fortran for

the IBM System/560 is contained in Section VI.

The parameters I and t) are chosen so that the addition in step 3

retains all the significant digits involved. That is, until step k, there

are no rounding errors. More insight into choosing I and i] will be

given in the following section. Also, an important restriction on the

magnitude of the product qn will be revealed.

Step number k is certainly the most interesting step of the algorithm.

If, instead, the accumulators are summed in increasing order (as one is

tempted to do after reading Wilkinson [1]), catastrophic cance-ulation can

occur. When this algorithm is incorporated in an innerproduct routine, it

often happens that

■v 0

•
•
•

Vi = 0

\
= -B

\-l = B

V2 = 0

^-3 = 0

\.k = E1

Vs = £2

f

where fev(B) -/ev(e) >t . Summing in increasing order will yield 0 .

However, as D. Jordan pointed out in [h], summing the accumulators in

decreasing order (r],..,,0) precludes the chance of this type of error.

The remaining question is: Does summing the accumulators in decreasing

order lead to some other case where a large relative roundoff error can

occur? The answer to this question is no. Proof of this assertion and

a sharp bound on the roundoff error are given in the next section.

IV. Error Analysis

Another convenient function is defined as follows: Let xeF be an

approximation of some real number x . If x = x and x / 0 , then

pad(x,x) is defined to be the number of digits by which the mantissa

of x can be shifted to the right before a significant digit is lost

(i.e., before a non-zero digit is shifted out of the low-ordei" position).

If x / x , then pad(x,x) is negative, and defined as follows:

suppose x has the representation (1); if there exists a £ such that

£ can be represented as

C = + .d^dg.. .^ • ß6"* with ij, / 0 , ^ / 0

and x+ £ = x and T is finite, then pad(x,x) is defined to be -T .
, *■.

Otherwise, pad(x,x) is defined as • <& . For completeness,

pad(0,0) = * . For example, if ß = 2 and t = 6 , pad(-.101000 '2 »-5^) = 3 .

If x = +.111111-2 and y =+.111111*2 , and ® represents floating-

point addition, and pad(x®y,x + y) = -2 since twe digits are lost during

the floating-point addition. When pad(x,x) is positive, the mantissa

of x has a "padding" of zero digits at th* end.

It follows that

pad(x,x) > 0 « x = x ,

pad(x,x) < 0 « x / x ,

* # *
pad(x,x) > t =» pad(x,x)=oo » x=x =0.

In step 2 of the algorithm, it is required that pad(a. .,a .) > 1 > 0 ,

for all i,j .

It is also expedient to define

p(x,x) = iev(x) + pad(x,x) . (k)

p(x,x) is invariant with respect to operand alignment (un-normalization)

and post-nonnalization of x , provided no exponent underflow or overflow

occurs.

Lemma 1: If x and y are two floating-point numbers and ® represents

floating-point addition, then

p(x®y,x +y) >min{p(x,x),p(y,y)} ,

provided no exponent underflow or overflow occurs.

Proof; Assume lev(x) > lev(y) . Let z denote an accumulator,

a floating-point number with a t+2 digit mantissa and an

overflow digit. Set z •- y and, if necessary, unnormalize z

so that iev(z) = lev(x) . The accumulator z can be treated

as a floating-point number if one ignores the overflow digit and

I

■HP— W>——I

considers on.ly the first t digits of the mantissa. In this

way, pad is defined for z . Let w denote another

accumulator with the same structure as z . Set w •- z+x .

Prior to the post-nonnalization step in forming w ,

iev(w) = lev(z) = iev(x) and

pad(w,x +y) > rain{pad(z,y),pad(x,x)} ,

and equality occurs whenever the low-order digits of x and y

don't cancel. From Equation (U) and the fact that

p(w,x +y) remains unchjmged dvtring the post-normalization

step, it follows that

p(x®y,x +y) = p(w,x +y) >min(p(z,y),p(x,x)} .

*■ *

Since p(z,y) = p(y,y) ,

p(x®y,x +y) >min{p(x,x),p(y,y)} .

Lemma 2; In the notation of Section III,

p(cV V > vk + '

Proof; Any term (y) that is added to the k-th accumulator satisfies

£ev(y) > vk and pad(y>y) > I .

By Lemma 1, Equation {h) and the fact that p(0,0) = » , the lemma

follows by induction.

Lemma _3: If O. / 0 , and N is the number of a. . added to the

accumulators, then

vk < iev(aj < v(k<-l) - 1 , if N = 1

vk-t+l +1 < levCd^) < v(l^l)+L'06a(N-l) J , if N > 1

(k = 0,1, ...,T1)

where [_ IJ denotes the largest integer not greater tnan t, .

Proof; The inequalities for N=l are obviously the same as those satisfied

by a single term added to the k-th accumulator. The uppar bound

for N > 1 is found by considering the largest number ({) which

can be added to the k-th accumulator, i.e.,

{ = +.2z...z00...0-ßv(k+l)"1'ra , (z = ß-1)

ID

»

and observing the fev(ciL) during repeated additions of 5 to a.

If the lower bound for N > 1 were not true, i.e., if

iev (a) <vk-t+f + i ,

then, by Lemma 2,

padCo^o*) > t * «k = 0 >

which is a contradiction.

Lemma U; If N < ß1"^1 , then each of the 0^ (k = 0,1, ...,Tl) is

exact.

Proof; By Lemma 3,

levCo^) < vk+ f+ 1 .

Combining this with Equation {h) and Lemma 2 gives

padCo^Q^) > 0 ,

which, by the definition of pad , Implies o^ is exact.

Loss of precision in an extended summation can result from either

1. repeated truncations (rcundings) of the sum, or

2. post-normalization left shift of the approximate sum.

The post-noraalization error can be formalized as follows: Let the

accumulation of the floating-point sum

where the x. (i = 1,2, ...,n) are exact, be defined as

11

wo = o

W.= W. 1 $x.
~ ~- ~

(i = 1,2, .•. ,n) ,

The fun~tion ~ of two floating-point variables is defined as

~(x,y) =- max[.tev(x), lev(y)} - lev(x$y)

Thus, during post··normalization of the floating-point sum x(±)y ,

the mantissa undergoes a left shift of ~(x, y) digits. Clear}¥, if

a carry occurs, ~(x,y) = -1 . Also, ~(x,y) > 1 only if

l .tev (x) - lev(y) I < 1 .

During the formation of \jr. = \jr.
1

$x. , any truncation error
~ ~- ~

already present in the low order digits of w
1

_
1

is multiplied by

~(\jr. l,x.)
~- ~ 13 •

The accumulators are summed in decreaf:ing order. Thus, the sum

s
0

can b e defined by

s1f+1 = o

sk = sk+1 $ ~ (k = ~-~-1, ... ,0) (j)

Lemma 5: If Sk+l is exact and lev(sk+1) :S lev(~) and if Sk+l

is un-normalized so that lev(Sk+l) = lev(~) , then

d (s S*) 0 .d d N :S a.l-v+l • pa k+l' k+l > , pron e '""

Proof: Lemma 1 and Equat ion (5) yield

12

which, with Lemma 2 and the definition of p , gives

iev(Sk+1) + Pa^Sj^S^) > v(kH-l) + I .

Substituting lev(a) for iev(Sk+1) and using Lemma 5, we

obtain the desired result:

pad(Sk+1,S*+1) > £ - L^gß(N-l) J •

Suppose that, in the process of summing the accumulators as

iascribed by Equation (5), k = j is the first k such that

paä(S. ,S,) < 0 . As a result of Lemma 5> the truncation (rounding)

erro.' in adding 3 ana a. must be caused in one of three ways:
j -** j

i) When the operands are aligned, pad(a.,a.) = 0 and a carry

occurs.

ii) When the operands are aligned, pad(S .^S ..) = 0 and a

carry occurs,

iii) iev(Si .) > iev(a.) and, when QL is aligned so that

lev{(x.) = iev(SJ+1) , pad(a^,a*) < - ^(3^,0^) <0 .

Lemma 6:

£ev(S.) > V.3 + i + 1 .
J

Proof: Case i) In the aligned position, using Lemma 2, we find that

iev(a.) = p(a.,a,) > vj + £ .

Thus iev(S) = £ev(a,) + 1 > vj + i + 1 .
J J

Case ii) ^ev(SJ+1) = P(
S

J+1*
S

J+1) > rain{p(Q:J+1,a*+1),...^(a^a*)]

> v j + \> + I •

13

Therefore iev(S.) >vj+v+i >vj + i + l .

Case iii) When a. is aligned, iev(S. .) = lev(a) > p(a ,a.) > vd + i

Now,

lev{S.) = ieviS.+1) + ACS^,^)

>lev(SJ+1) > lev(a.) = vj + I .

Thus,

iev(S) > vj+ I + 1 .

Since lev(a. ,) < vj + I 'ogoCN"1) J >

lev{S.) - levia.^) > i + 1 - L'ogß(N-l) J .

The assumption in Lemma h (i.e., N < ß '') is sufficient to guarantee

that lev(S.) -iev(a._1) >1 , from which it follows that A(S.,a., -,) <1

Similarly, each of the subsequent additions can undergo a post-

normalization left shift of at most one digit. In fact, at most one of

the additions

Sk = Sk+l®ak (k = J-l,j-2,...,0)

will undergo a post-normalization left shift of one digit.

Lemma J: If N < ß , the mantissa of each of the accumulators

a. ,Q; , ...,a is shifted at least t digits during operand

ali g run ent,. wh er e

K = r(t+i)/vi . (6)

ik

Proof; By Lanma 6,

lev(S, ^ >vj + f , (i = 0,1, ...,j) •

By Lemma 5,

/ev(a ^ < v(d-i) + / + 1 , (i = 0,1,. ..,J) ,

and iev(S i+1) - lev(a. ^ > vi - 1 > t , (i = \,\+l, ...,j) .

Thus the mantissa of each of the accumulators cr .,aJ . n,...,a„

is shifted at least t digits during operand alignment.

Theorem 1; If N < ß " , if the accumulator used in accumulating S

has at least t+1 digits, and if no underflow or overflow occurs,

then the absolute error in Sn is bounded by

iev(S)-m-t+l
|s-S0| <\8ß

where

for chopped arithmetic

0 5 = n i
for rounded arithmetic

and X. is given by Equation (6).

Proof: Since a post-normalization left shift of at most one digit can

occur only once while the accumulators are summed, the worst case

occurs when it is caused by the addition of a . (see Lemma 7) •

Subsequent additions of a. . .,a. . ,-,,•.• cannot affect the computed

value of S- (see Khuth's [6] discussion of problem 5* page ^98)»

Prior to the addition of <* ,, a maximum of \ truncations (roundings)
fev(Sn)-ra-t

can occur, each resulting in an error of ß u or less.
Q.E.D.

15

For machines which use t-digit accumulators and chopped arithmetic,
iev(So)-m-t+l

the error bound is (\-l)ß w (a stronger result!). Note

that, although the above theorem gives a bound on the absolute error, it

also provides a bound on the relative error. Specifically, if the true

value of the sum s is zero, then S. = 0 .

1-vH"l
Theorem 2; If N < ß " and no underflow or overflow occurs, then

s = S0(l+e) ,

where

lei <\6ß2't .

Proof; i) If S0 = 0 , then, since total cancellation of significant

digits cannot occur in summing the accumulators, s = 0 .

ii) If S. / 0 , then assume s -S- = S0e . By Theorem 1,

. . . . lev(S0)-m-t+l
l*-S0| = |S0| |e| <\8ß 0

lev(S)-m-l
Since |S0| >ß v ,

|e| < Xbß2'* .

These theoretical res\ilts are substantiated by an experiment

reported by D. Jordan [k], Jordan used this technique for accumulating

innerproducts on an IBM 360 (ß = 16, t = lU). He chose 7) = 52 , 1=6

and q = 2 , and states:

16

"Bnpirical tests were run to determine the small amount of roundoff

that might be expected from the procedure. The tests used 1000

dot products of 15-canponent vectors where the components were
50 30

randomly generated in the range (-10 , 10) . The results of

this routine were checked against results obtained using 256

hex-digit arithmetic chrough the multiple precision arithmetic

package written by J. R. Ehrman of SLAC. Of the thousand cases,

U67 were in exact agreement, 537 had an erroneous last bit and 3

had an erroneous penultimate bit." [h, p. 3].

If the last sentence in Jordan's statement were changed to read

"... U67 were in exact agreement, 537 had an erroneous last (hexadecimal)

digit and 3 had an erroneous penultimate digit.", then Jordan's results

are consistent with those of Michael Saunders at Stanford University.

Saunders performed several experiments on an IBM 360 using ß = l6,

t = lU, T\ = k3, 1=6 and q = 2 . He found examples where the 13-th

hexadecimal digit of the result was in error, but none with errors in

the 12-th digit. Errors of this size are consistent with Theorem 2.

V. Additional Modifications to the Algorithm

If one desires the final floating-point result to be correct in

all digits, the following procedure can be used immediately after

calculating S :

1. Form a-,ar,, ...,a (q > 1), where a.+a_+... + a = S- 1' 2' ' q v^ - •" 12 q 0

and each a. has the property that the last I digits of

its mantissa are 0 .

2. Add -a^-a_,...,-a to the accumulators.

5. Sum the accumulators in decreasing order. Call the result A .

k. sr)
+ ^ is "the full precision result.

17

In problems where N may get arbitrarily large (e.g., numerical

integration), all is not lost. One merely increments an integer every

time a tem is added to the accuniulators and when the integer is equal
f-\J+I

to ß -m(7^l) , the following procedure is executed:

1. reset the integer to zero.

2. for i := 0 step 1 until T\ do

begin

a := a.; a. := 0;

addtoaccumulators (a)

end

where the procedure addtoaccumulators forms the a.,,...,a.

variables, adds q to the integer and adds the a. .

(j = 1,...,q) to the accumulators.

5. Resume the original algorithm.

18

VI. Conclusion

The generality of the preceding discussion tends to obscure the

simplicity of the algorithm. For this reason, a simple illustrative

example of this technique programmed in Fortran for the IBM 36o is included:

REAL FUNCTION SüM(X,N)

EQUIVALENCE (IEQ,W)

DIMENSION X(l)

REAL*8 R(JO),S8,DBLE

DO K) 1=1, U5

10 R(I)=O.ODO

DO 20 1=1, N

W=ABS(X(I))

IEXP=IEQ/5055l61*8 + 1

C 50531648 IS 5*(2**2U) WHICH SHIFTS RIGHT 2k BITS AND

C DIVIDES BY 5. ABS GETS RID OF THE SIGN BIT.

20 R(IEXP)=R(IEXP) + DBLE(X(I))

S8»O.0D0

DO 50 1=1,45
50 S8=S8 + Rikk-1)

SUM=SNGL(S8)

RETURN

END

This subroutine finds the sum of a vector of short-precis ion (t = 6)

numbers. Since the 560 used has long-precision (t = Ik) floating-point

hardv/are, it is convenient to use lU digit accumulators and append 8 zero

digits at the end of each x, . Thus, q = 1 and 1=8. The value

Tl = U5 was chosen to give v = 5 . Thus, since ß = 16 , the short-

precision result is guaranteed to have full-precision (chopped)

accuracy provided N < 16 = 16,777,216 .

19

This example is typical in that q is us~ small (1 or 2) 1

l is usually chosen for convenience, and ~

accumulators can be quickly indexed and so \1

is usually chosen so the

is sufficiently small.

The alg'Jrithm is currently used in several innerproduct routines

(see Malcolm [3] for desc~iptions of these routines, including running

ti~mes). Since efficiency is satisfactory, it may well be feasible to

implement this technique through a microprograzn so that the programmer

c3.n speci fy by a certain operation code that a summation is to be

perfonned WJ.tll a set of these accumulators rather than with a single

a cumulator .

VII . Acknowledetnent

The author is indebted to Professor George E. Forsythe for his

helpf'ul connnents and cr iticisms of the .manuscript. The author would

also like to t hank Micnael Saunders for several enlightening discussions

~uring the evolution of this algorithm and for his wealth of numerical

counterexamples.

20

BIBLIOGRAHIY

[1] Wilkinson, J. H., Rounding Errors in Algebraic Processes,

Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1965.

[2] Wolfe, J. M., "Reducing Truncation Errors by Programming," CACM,

Vol. 7; No. 6, June 196^, 355-356.

[3] Malcolm, M. A., "A Description and Comparison of Subroutines

for Computing Euclidean Inner Products of Vectors," Technical

Report (to appear), Computer Science Department, Stanford University,

1970.

[k] Jordan, D. f., "ML FI5I+S - DOTP, Extra-Precision Accumulating

Inner Product," Argonne National Laboratory, Applied Mathematics

Division, System/360 Library Subroutine, Argonne, Illinois,

November, 1967.

[5] Miller, Ole, "Quasi Double-precision in Floating Point Addition,"

BIT, 5 (1965), 37-50.

[6] Knuth, D. E., "Serainumerical Algorithms," The Art of Computer

Programming, Vol. 2, Reading, Mass.: Addison-Wesley Publishing

Co., 1969.

21

-^"■«^ WJi,!!..!««««

Ifaclaaslfled
Security CU««iftc»tioii

DOCUMENT CONTROL DATA .R&D
Srrurlly claiiHIrUlon ol Mil», *o*y ol mktnurl mnä Indtmlng imolmtlan imiiit Iw «gWf»<j»h«>»Jft>_oi»»f«H fyff It rlmiillltd)

omciNATiNC ACTIVITY fCotperaM auMlorj

Computer Science Department
Stanford University
Stanford, California 9^305

M. NKPOMT ICCURITV CLAttlPIC « TION

Unclassified
26. enoup

3 RCPOHT TITLE

AN ALGORITHM FOR FLOATING-POINT ACCUMULATION OF SUMS
WITH SMALL RELATIVE ERROR

4 DescRiPTi ve NOTES (Typ9 el report and Inclutlv» drnfj

Meinuscript for Publication (Technical Report)
i *u THOPISI (Firm maw, middlt Initial, laal naaia;

Michael Malcolm

« PCPO^T QA TE

June 19T0
7a. TOTAL NO. OP PAOtf

22
7b. NO. OP ncpt

•«. CONTRACT OP GMANT NO

iNOOOl ii-67-A-0112-0029
h PKr.JECTNO

m okk-2ii

M. OPIOINATOP't HCPOPT NUMaCPItl

STAN-CS-7O-I63
•». OTHRK PCPORT NO(l((Any oMar nuaifeara Mai ffia>> ba atftanarf

Ihl» npoti)

none
10 OISTPIBUTION tTATCMENT

Releasable without limitations on dissemination.

II SUPPLEMENTAIIV NOTCI II tPONtOPINO MILITAPV ACTIVITY

Office of Naval Research

A practical algorithm for floating-point accumulation is presented.
Through the use of multiple accumulators, errors due to cancellation
are avoided. An example in Fortran is included. An error analysis
providing a sharp bound on the relative error is also given.

DD/r..1473 (PA6E,,

S/N 0101-807.6S01 urltv Cuääihcatien

^mmmm

Unclai8lfl»d

LINK *

«•LC • T

LINK ■ LIMH C

NOLI • T ■OkK »T

Floating point arithmetic

error analysis

DD ,T.A473 «iA«>
(PAGE 2)

UnclMsified I .

